
Relating Strands and Multiset Rewriting for Security Protocol Analysis�

Revised Extended Abstracty

I. Cervesato
ITT Industries

iliano@itd.nrl.navy.mil

N. Durgin, J. Mitchell
Stanford University

fnad, jcmg@cs.stanford.edu

P. Lincoln
SRI International

lincoln@csl.sri.com

A. Scedrov
U. of Pennsylvania

scedrov@cis.upenn.edu

Abstract

Formal analysis of security protocols is largely based on a
set of assumptions commonly referred to as the Dolev-Yao
model. Two formalisms that state the basic assumptions of
this model are related here: strand spaces [6] and multiset
rewriting with existential quantification [2, 5]. Although it
is fairly intuitive that these two languages should be equiva-
lent in some way, a number of modifications to each system
are required to obtain a meaningful equivalence. We ex-
tend the strand formalism with a way of incrementally grow-
ing bundles in order to emulate an execution of a protocol
with parametric strands. We omit the initialization part of
the multiset rewriting setting, which formalizes the choice
of initial data, such as shared public or private keys, and
which has no counterpart in the strand space setting. The
correspondence between the modified formalisms directly
relates the intruder theory from the multiset rewriting for-
malism to the penetrator strands.

1 Introduction

Security protocols are widely used to protect access to
computer systems and to protect transactions over the Inter-
net. Such protocols are difficult to design and analyze for
several reasons. Some of the difficulties come from sub-
tleties of cryptographic primitives. Further difficulties arise
because security protocols are required to work properly
when multiple instances of the protocol are carried out in
parallel, where a malicious intruder may combine data from

�Partially supported by DoD MURI “Semantic Consistency in Informa-
tion Exchange” as ONR Grant N00014-97-1-0505, by NSF Grants CCR-
9509931, CCR-9629754 and CCR-9800785, and by NRL under contract
N0014-96-D2024 to various authors.

yThe original version of this paper was published in the Proceedings of
the Thirteenth IEEE Computer Security Foundations Workshop (P. Syver-
son, editor), pp. 35-51, IEEE Computer Society Press, Cambridge, UK
3-5 July 2000. Subsequent research revealed an error in Lemma 4.1. This
version corrects the error and propagates the resulting changes, while re-
maining as close as possible to the spirit of the original paper.

separate sessions in order to confuse honest participants. A
variety of methods have been developed for analyzing and
reasoning about security protocols. Most current formal
approaches use the so-called Dolev-Yao model of adver-
sary capabilities, which appears to be drawn from positions
taken in [9] and from a simplified model presented in [4].
The two basic assumptions of the Dolev-Yao model, perfect
(black-box) cryptography and a nondeterministic adversary,
provide an idealized setting in which protocol analysis be-
comes relatively tractable.

One recent setting for stating the basic assumptions
of the Dolev-Yao model is given by strand spaces [6, 7,
8]. Strand spaces provide a way of presenting informa-
tion about causal interactions among protocol participants.
Roughly, a strand is a linearly ordered sequence of events
that represents the actions of a protocol participant. A
strand space is a collection of strands, equipped with a graph
structure generated by causal interaction. Strand spaces
provide a simple and succinct framework for state-based
analysis of completed protocol runs. State space reduction
techniques based on the strand space framework are utilized
in an efficient automated checker, Athena [10].

Protocol transitions may also be naturally expressed as
a form of rewriting. This observation may be sharpened
to a rigorous, formal definition of the Dolev-Yao model
by means of multiset rewriting with existential quantifi-
cation [2, 5]. In this framework protocol execution may
be carried out symbolically. Existential quantification, as
commonly used in formal logic, provides a natural way of
choosing new values, such as new keys or nonces. Multiset
rewriting provides a very precise way of specifying security
protocols and has been incorporated into a high-level spec-
ification language for authentication protocols, CAPSL [3].
As presented in [2, 5], a protocol theory consists of three
parts: a bounded phase describing protocol initialization
that distributes keys or establishes other shared information,
a role generation theory that designates possibly multiple
roles that each principal may play in a protocol (such as ini-
tiator, responder, or server), and a disjoint union of bounded

35

subtheories that each characterize a possible role. The mul-
tiset rewriting formalism allows us to formulate one stan-
dard intruder theory that describes any adversary for any
protocol.

One would expect that strand spaces and multiset rewrit-
ing should be equivalent in some way. However, a mean-
ingful equivalence may be obtained only after a number of
modifications are made in each setting. To this end, we ex-
tend the strand space setting by introducing several dynamic
concepts that describe the evolution of parametric strands as
an execution of a protocol unfolds. In particular, we present
a formalized notion of parametric strands and we describe
a way of incrementally growing strand space bundles in or-
der to emulate an execution of a protocol with parametric
strands. In addition to contributing to the understanding of
the strand space setting, these extensions make possible the
comparison with multiset rewriting specifications. In order
to obtain a precise equivalence, we also must drop the ini-
tialization part of the multiset rewriting formalism, which
specifies the choice of initial conditions. In many protocols,
the initial conditions specify generation of fresh shared pub-
lic or private keys. The initialization phase generating fresh
initial data has no counterpart in the strand space setting.
We also anticipate the validation of variable instantiations
to the very beginning of the execution of a role. After these
modifications, there is a straightforward and direct corre-
spondence between strand spaces and multiset rewriting
theories. Moreover, the correspondence directly relates the
intruder theories from the multiset rewriting formalism to
penetrator strands. We believe that the investigation of the
exact nature of the relationship between the two formalisms
deepens our understanding of the Dolev-Yao model and can
suggest extensions and refinements to these and other spec-
ification languages based on strand spaces.

The multiset rewriting formalism is discussed in Sec-
tion 2. In section 3, we discuss strand spaces and present
our extensions. The translation from multiset rewriting to
strand spaces is presented in Section 4. The translation from
strand spaces to multiset rewriting is presented in Section 5.

2 Multiset Rewriting Theories

In Section 2.1 we recall a few multiset rewriting con-
cepts, and, in Section 2.2, we apply them to the specifica-
tion of cryptoprotocols. Regular protocol theories, a further
restriction, are introduced in Section 2.3.

2.1 Multiset Rewriting

A multisetM is an unordered collection of objects orel-
ements, possibly with repetitions. Theempty multisetdoes
not contain any object and will be written “�”. We accu-
mulate the elements of two multisetsM andN by taking

theirmultiset union, denoted “M;N ”. The elements we will
consider here will be first-order atomic formulasA(~t) over
some signature.

In its simplest form, amultiset rewrite ruler is a pair of
multisetsF andG, respectively called itsantecedentand
consequent. We will consider a slightly more elaborate no-
tion in whichF andG are multisets of first-order atomic
formulas with variables among~x. We emphasize this aspect
by writing them asF (~x) andG(~x). Furthermore, we shall
be able to mark variables in the consequent so that they are
instantiated to “fresh” constants, that have not previously
been encountered, even if the rule is used repeatedly. A rule
assumes then the form

r : F (~x) �! 9~n:G(~x; ~n)

wherer is a label and9~n indicates that the constants~n
ought to be fresh. Amultiset rewriting systemR is a set
of rewrite rules.

Rewrite rules allow transforming a multiset into another
multiset by making localized changes to the elements that
appear in it. Given a multiset of ground factsM , a rule
r : F (~x) �! 9~n:G(~x; ~n) is applicableif M = F (~t);M 0,
for terms~t. Then, applying r to M yields the multiset
N = G(~t;~c);M 0 where the constants~c are fresh (in particu-
lar, they do not appear inM), ~x and~n have been instantiated
with ~t and~c respectively, and the factsF (~t) in M have been
replaced withG(~t;~c) to produceN . We denote the appli-
cation of a single rule and of zero or more rewrite rules by
means of theone-stepandmultistep transitionjudgments:

M
r�!RN M

~r�!�
RN

respectively. The labelsr and~r identify which rule(s) have
been applied and the terms~t used to instantiate~x. Thus,~r
acts as a complete trace of the execution.

2.2 Protocol Theories

We model protocols by means of specifically tailored
multiset rewriting systems. We present here a simplified
version of the model introduced in [2, 5]. A fragment suf-
ficient for a comparison with the strand formalism will be
introduced in Section 2.3. However, we refer the interested
reader to these presentations and to [1] for a more detailed
account. We rely upon the following atomic formulas:

Persistent information: Data such as the identity of prin-
cipals and their keys often constitute the stage on
which the execution of a protocol takes place, and does
not change as it unfolds. We will represent and access
this persistent informationthrough a fixed set ofper-
sistent predicatesthat we will indicate using a slanted
font (e.g.KeyP , as opposed toN).

36

Alice

rA0 : �A(A;B) �! A0(A;B); �A(A;B)

rA1 : A0(A;B) �! 9NA: A1(A;B;NA); N(fNA; AgKB)

rA2 : A1(A;B;NA); N(fNA; NBgKA) �! A2(A;B;NA; NB)

rA3 : A2(A;B;NA; NB) �! A3(A;B;NA; NB); N(fNBgKB)

Bob

rB0 : �B(A;B) �! B0(A;B); �B(A;B)

rB1 : B0(A;B); N(fNA; AgKB) �! B1(A;B;NA)

rB2 : B1(A;B;NA) �! 9NB :B2(A;B;NA; NB); N(fNA; NBgKA)

rB3 : B2(A;B;NA; NB); N(fNBgKB) �! B3(A;B;NA; NB)

where �A(A;B) = Pr(A); PrvK(A;K�1
A

); Pr(B); PubK (B;KB)

�B(B;A) = Pr(B); PrvK(B;K�1
B); Pr(A); PubK (A;KA)

Figure 1. Multiset Rewriting Specification of the Needham-Schroeder Protocol

In [2, 5], we described the choice of the persistent data
by means of a set of multiset rewrite rules of a spe-
cific form, that we called theinitialization theory. We
showed that the application of these rules can be con-
fined to an initialization phase that precedes the exe-
cution of any other rule. Let� be the resulting set
of ground facts (constraints on the initialization theory
prevent� from containing duplicates [2, 5]). Strand
constructions assume instead that the persistent infor-
mation is given as a set. We reconcile the two ap-
proaches by dropping the explicit initialization phase
of [2, 5] and assuming� given. We will allow individ-
ual rules to query� (but not to modify it).

Network messages:Network messages are modeled by
the predicateN(m), wherem is the message being
transmitted. Having a distinct network predicate for
each message exchanged in a protocol specification,
as done in [2, 5], is equivalent, but would obscure the
translation in Section 5.

Role states: We first choose a set ofrole identifiers
�1; : : : ; �n for the different roles constituting the pro-
tocol. Then, for each role�, we have a finite family of
role state predicatesfA�i(~m) j i = 0 : : : l�g. They are
intended to hold the internal state of a principal in role
� during the successive steps of the protocol.

This scheme can immediately be generalized to
express roles that can take conditional or non-
deterministic actions (e.g.toss a coin to choose among
two messages to send — useful for zero-knowledge
proofs for examples — or respond in two different
ways depending on the contents of an incoming mes-

sage — useful for intrusion detection). We simply
need to alter our naming convention for role states and
rules (below) to take alternatives into account. Indeed,
any partial ordering of the role state predicates will
implement awell-founded protocol theory, as defined
in [2, 5]. This paper will consider only linearly ordered
role states, as the layer of technicality required to treat
the general case would obscure the comparison with
strands.

An additional predicate symbol (I) is needed to model the
intruder’s knowledge (see Appendix A).

We represent each role� in a protocol by means of a
singlerole generation ruleand a finite number ofprotocol
execution rules. The purpose of the former is to prepare for
the execution of an instance of role�. It has the form

r�0 : �(~x) �! A�0(~x); �(~x):

where, here and in the rest of the paper,�(~x) denotes a
multiset of persistent atomic formulas that may mention
variables among~x. Notice how persistent information is
preserved. The execution rules describe the messages sent
and expected by the principal acting in this role. Fori =
0 : : : l� � 1, we have a ruler�i+1 of either of the following
two forms:

send: A�i(~x); �(~x; ~z)
�! 9~n:A�i+1(~x; ~z; ~n);N(m(~x; ~z; ~n)); �(~x; ~z)

receive: A�i(~x);N(m(~x; ~y)); �(~x; ~y; ~z)
�! A�i+1(~x; ~y; ~z); �(~x; ~y; ~z)

wherem(~v) stands for a message pattern with variables
among~v. In the first type of rules, we rely on the existen-
tial operator9~n to model the ability of a principal to create

37

nonces when sending a message. This principal can also
include some persistent data~z (e.g. the name and public
key of an interlocutor), possibly related to information it al-
ready possesses (~x). In the second rule template, the princi-
pal should be able to access persistent information~z related
to data in the received message~y (e.g.the sender’s public
key) or previously known information~x. Situations where
a principal both sends and receive a message, or sends mul-
tiple messages, can easily be expressed by these rules.

A protocol is specified as a setR of such roles. EveryR
constructed in this way is trivially a well-founded protocol
theory [2, 5]. As an example, Figure 1 shows the encoding
of the familiar simplified Needham-Schroeder public key
protocol in the multiset rewriting notation. We usedAlice
andBob as nicknames for the initiator and responder, re-
spectively. For the sake of readability, we omitted the keys
in the persistent state predicates.

The behavior of the intruder according to the Dolev-Yao
model [4, 9] is similarly specified as a set of rewrite rules [1,
2]. We describe it in Appendix A. We will refer to them as
I. A state is then a multiset of ground factsS = �; A;N; I ,
whereA is a multiset of role statesA�i(~t), N is multiset
of messagesN(m) currently in transit, andI summarizes
the intruder’s knowledgeI(m). Notice in particular that the
initial state is just�; I0, whereI0 contains the information
(e.g.keys) initially known to the intruder.

2.3 Regular Protocol Theories

In the following, we will consider only protocol theo-
ries of a particular format, that we callregular. The role
generation rule of a regular role accesses all the persistent
information that will be used in this role. It has therefore
the following form:

r�0 : �(~x) �! A�0(~x); �(~x):

Consequently, protocol execution rules do not need to men-
tion any persistent information:

send: A�i(~x) �! 9~n:A�i+1(~x; ~n);N(m(~x; ~n))

receive: A�i(~x);N(m(~x; ~y)) �! A�i+1(~x; ~y)

Regular protocol theories guess all the persistent informa-
tion that are used in a role, including the identity and keys
of other parties, before any message is exchanged. As we
will see, this is closely related to the mode of executions
of strands. The example in Figure 1 is a regular protocol
theory.1

1The use of the general notion of protocol theory lead to an error in the
original version of this paper.

3 Strand Constructions

We now define strands and related concepts. In order
to simplify this task, we first recall some basic definitions
from graph theory in Section 3.1. In Section 3.2, we adapt
the definitions in [10], which is more concise than [6]. In
Section 3.3, we extend the strand formalism with a series of
new concepts intended to ease the comparison with protocol
theories. These extensions are of independent interest and
therefore we discuss some of their properties.

3.1 Preliminary Definitions

A directed graphG is a pair(S;�!) whereS is the
set ofnodesof G and�! � S � S is the set ofedgesof
G. We will generally write�1 �! �2 for (�1; �2) 2 �!.
A directed labeled graphGL is a structure(S;�!; L;�)
where(S;�!) is a directed graph,L is a set oflabels, and
� : S ! L is a labeling functionthat associates a label to
every node. In the sequel, all our graphs will be directed and
labeled, but we will generally keep� implicit for simplicity.
In particular, for� 2 S andl 2 L, we will write “� = l”
as an abbreviation of�(�) = l. However, for�1; �2 2 S,
expressions of the form�1 = �2 shall always refer to the
nodes, and not to their labels.

A graphG = (S;�!) is a chain if there is a total or-
dering�0; �1; : : : of the elements ofS such that�i �! �j
iff j = i + 1. A graphG = (S;�!) is adisjoint union of
chainsif S =

S
i2I Si and�! =

S
i2I �!i (for some

setI) and(Si;�!i) are chains for eachi 2 I .
A bipartite graphis a structureG = (S1; S2;�!) such

thatS1 andS2 are disjoint,(S1 [S2;�!) is a graph, and if
�1 �! �2 then�1 2 S1 and�2 2 S2 (i.e.�! � S1 � S2).
Observe that all edges go fromS1 to S2. We say thatG =
(S1; S2;�!) is

� functionalif �! is a partial function (i.e. if � �! �1
and� �! �2 imply �1 = �2).

� injective if �! is injective (i.e. if �1 �! �0 and
�2 �! �0 imply �1 = �2).

� surjectiveif �! is surjective ontoS2 (i.e.for each�0 2
S2 there is� 2 S1 such that� �! �0).

A bi-graph G is a structure(S;=);�!) where both
(S;=)) and(S;�!) are graphs.

In the sequel, we will often rely on the natural adaptation
of standard graph-theoretic notions (e.g. isomorphism) to
labeled graphs and bi-graphs.

3.2 Strands and Bundles

An event is a pair consisting of a messagem and an
indication of whether it has been sent (+m) or received
(�m) [6]. The set of all events will be denoted�M.

38

�(~x; ~n) : ~n fresh,�(~x) �m1(~x; ~n)
w
w
w
�

�m2(~x; ~n)

...
�mj�j�1(~x; ~n)

w
w
w
�

�mj�j(~x; ~n)

Figure 2. A Parametric Strand

A strand is a finite sequence of events,i.e. an element
of (�M)�. We indicate strands with the letters, the length
of a strand asjsj, and itsi-th event assi (for i = 1 : : : jsj).
Observe that a strands can be thought of as a chain graph
(S;=)) with labels over�M, whereS = fsi : i =
1 : : : jsjg andsi =) sj iff j = i+ 1.

Slightly simplifying from [6], astrand spaceis a set of
strands with an additional relation (�!) on the nodes. The
only condition is that if�1 �! �2, then�1 = +m and
�2 = �m (for the same messagem). Therefore,�! rep-
resents the transmission of the messagem from the sender
�1 to the receiver�2. Alternatively, a strand space can be
viewed as a labeled bi-graph� = (S;=);�!) with labels
over�M, =) � S � S, and�! � S+ � S� where
S+ andS� indicate the set of positively- and negatively-
labeled nodes inS respectively, and the constraints dis-
cussed above:(S;=)) is a disjoint union of chains, and if
�1 �! �2, then�1 = +m and�2 = �m for some message
m.

A bundleis a strand space� = (S;=);�!) such that
the bipartite graph(S+; S�;�!) is functional, injective,
and surjective, and(=) [�!) is acyclic. In terms of
protocols, the first three constraints imply that a message is
sent to at most one recipient at a time, no message is re-
ceived from more than one sender, and every received mes-
sage has been sent, respectively. Dangling positive nodes
correspond to messages in transit. We should point out that
functionality is not required in [6, 10].

If we think in terms of protocols, a bundle represents a
snapshot of the execution of a protocol (therefore a dynamic
concept). As we will see, this comprises a current global
state (what each principal and the intruder are up to, and the
messages in transit), as well as a precise account of how this
situation has been reached.

3.3 Extensions

We now introduce a few new concepts on top of these
definitions. Besides contributing to the understanding of

this formalism, they will ease the comparison with multiset
rewriting specifications.

The notion of role is kept implicit in [6] and rapidly in-
troduced as the concept oftrace-typein [10]. A role is noth-
ing but a parametric strand: a strand where the messages
may contain variables. An actual strand is obtained by in-
stantiating all the variables in a parametric strand (or an ini-
tial segment of one) with persistent information and actual
message pieces. For simplicity, we will not define nor con-
sider constructions corresponding to arbitrary well-founded
protocol theories (see Section 2 and [2, 5]).

A parametric strandfor the role� may look as in Fig-
ure 2. The freshness of~n, i.e. the fact that the variables~n
should be instantiated with “new” constants that have not
been used before, is expressed as a side condition. Using
the terminology in [6, 10], the values~n areuniquely orig-
inated. This is a slightly more verbose way of specifying
freshness than our use of9 in the previous section, but it
achieves the same effect. What we see as the main differ-
ence however is that freshness is presented as a meta-level
comment in [6, 10], while we have it as an operator in our
specification calculus. The relationship between variables
are expressed in [10] using intuitive notation,e.g.k�1 for
the inverse key ofk, or kA for the key ofA. We formal-
ize these relations by equipping� with the constraints�(~x),
that, without loss of generality, will be a set of persistent
atomic formulas from Section 2, parameterized over~x.

As in the case of transition systems, aprotocol is given
as a set of roles. The model of the intruder in the style of
Dolev and Yao [4, 9] is also specified as a set of paramet-
ric strandsP(P0) calledpenetrator strands, whereP0 is the
intruder’s initial knowledge (see Appendix A or [10] for a
definition, and [1] for an analysis). As an example, Figure 3
shows how the Needham-Schroeder public key protocol is
modeled using parametric strands, where we have used in-
coming and outgoing arrows instead of the tags+ and� for
readability.

These definitions allow us to specialize the bundles we
will be looking at: given a set of parametric strandsS, ev-
ery strand in a bundle� should be an initial prefix of an
instantiated protocol (or penetrator) strand. We are inter-
ested in initial prefixes since a bundle is a snapshot of the
execution of a protocol, and a particular role instance may
be halfway through its execution. We then say that� is a
bundle overS.

We will now give a few definitions needed to emulate the
execution of a protocol with parametric strands. No such
definitions can be found in the original description of strand
constructions [6, 10], which focuses on analyzing protocol
traces, not on specifying how to generate them.

First, observe that the network traffic in a bundle is ex-
pressed in terms of events and of the�! relation. The
edges of�! represent past traffic: messages that have been

39

Alice(A;B;NA; NB) NA fresh,�A(A;B)

fNA; AgKB �!
w
w
w
�

�! fNA; NBgKAw
w
w
�

fNBgKB �!

Bob(A;B;NA; NB) NB fresh,�B(A;B)

�! fNA; AgKBw
w
w
�

fNA; NBgKA �!
w
w
w
�

�! fNBgKB

where �A(A;B) = Pr(A); PrvK(A;K�1
A); Pr(B); PubK (B;KB)

�B(A;B) = Pr(B); PrvK(B;K�1
B); Pr(A); PubK (A;KA)

Figure 3. Parametric Strand Specification of the Needham-Schroeder Protocol

sent and successfully received. The dangling positive nodes
correspond to current traffic: messages in transit that have
been sent, but not yet received. We will call these nodes the
fringeof the bundle (or strand space). More formally, given
a strand space� = (S;=);�!), its fringe is the set

Fr(�) = f� : � 2 S; � = +m; and 69�0: � �! �0g

Another component of the execution state of a protocol
is a description of the actions that can legally take places
in order to continue the execution. First, some technicali-
ties. Let� be a bundle over a set of parametric strandsS,
a completionof � is any strand space~� that embeds� as a
subgraph, and that extends each incomplete strand in it with
the omitted nodes and the relative=)-edges. Ifs is a strand
in � and~s is its extension in~�, the sequence obtained by re-
moving every event ins from ~s is itself a (possibly empty)
strand. We call it aresidual strandand indicate it as~s n s.
We then write~� n � for the set of all residual strands of~�
with respect to�.

Given these preliminary definitions, aconfigurationover
S is a pair of strand spaces(�; �]) where� is a bundle over
S, and�] is an extension of� whose only additional�!-
edges originate inFr(�), cover all ofFr(�), and point to
�] n �. Clearly, if � = (S;=);�!) and�] = (S];=)];

�!]), we have thatS � S], and=) � =)], and finally
�! � �!].

A one-step transition is what it takes to go from one bun-
dle to the “next”. There are two ways to make progress in
the bundle world: extend a strand, or add a new one. Let us
analyze them:

� Extending a strand: If the configuration at hand em-
beds a strand that is not fully contained in its bundle
part, then we add the first missing node of the latter
and the incoming=)-edge. If this node is positive,
we add an�!-arrow to a matching negative node. If

it is negative, we must make sure that it has an incom-
ing�!-edge.

� Creating a strand: Alternatively, we can select a para-
metric strand and instantiate first its “fresh” data and
then its other parameters. Were we to perform both in-
stantiations at once, there would be no way to run pro-
tocols which exchange nonces, such as our example in
Figure 3.

We will now formalize this notion. Let(�1; �
]
1) and

(�2; �
]
2) be configurations over a set of parametric strands

S, with �i = (Si;=)i;�!i) and �
]
i = (S]

i ;=)
]
i ;

�!]
i), for i = 1; 2. We say that(�2; �

]
2) imme-

diately follows (�1; �
]
1) by means of moveo, written

(�1; �
]
1)

o7�!S(�2; �
]
2), if any of the following situations ap-

ply. An intuitive sense of what each case formalizes can
be gained by looking at the pictorial abstraction preceding
each possibility. Here,�, �0 and�00 stand for nodes on fully
instantiated strands.

�

(+m)

�00

(�m)

S S]nS

(�;�;�00)

�!S

�

(+m)

�00

(�m)
����!

S S]nS

S0: There are nodes�; �00 2 S]
1 n S1 such that� = +m,

�00 = �m, no�!-edge enters�00, and no=)-arrow
enters�. Then,

� S2 = S1 [f�g,
=)2 = =)1,
�!2 = �!1;

� S]2 = S]1,
=)]

2 = =)]
1,

�!]
2 = �!]

1 [f(�; �
00)g.

�

(+m)

�00

(�m)

w
w
�

�0S S]nS

(�;�0;�00)

�!S

�

(+m)

�00

(�m)

w
w
�

�0

����!

S S]nS

40

S: There are nodes�; �00 2 S
]
1 n S1 and �0 2 S1 such

that� = +m, �00 = �m, no�!-edge enters�00, and
�0 =)]

1 �. Then,

� S2 = S1 [f�g,
=)2 = =)1 [f(�

0; �)g,
�!2 = �!1;

� S
]
2 = S

]
1,

=)]
2 = =)]

1,
�!]

2 = �!]
1 [f(�; �

00)g.

�

(�m)

�00

(+m)
����!

S S]nS

(�;�;�)

�!S

�

(�m)

�00

(+m)
����!

S S]nS

R0: There are nodes� 2 S
]
1 n S1 and�00 2 S1 such that

� = �m, �00 = +m, �00 �!]
1 �, and no=) enters�.

Then,

� S2 = S1 [f�g,
=)2 = =)1,
�!2 = �!1 [f(�

00; �)g;

� �]2 = �]1.

�

(�m)

�00

(+m)
����!

w
w
�

�0S S]nS

(�;�0;�)

�!S

�

(�m)

�00

(+m)
����!

w
w
�

�0S S]nS

R: There are nodes� 2 S
]
1 n S1 and�0; �00 2 S1 such that

� = �m, �00 = +m, �00 �!]
1 �, and�0 =)]

1 �.
Then,

� S2 = S1 [f�g,
=)2 = =)1 [f(�

0; �)g,
�!2 = �!1 [f(�

00; �)g;

� �
]
2 = �

]
1.

S S]nS

�!S

+
...
+

S S]nS

�[�]

Cf : � is a parametric strand inS and � is a substitution
for all its variables marked “fresh” with constants that
appear nowhere in(�1; �

]
1).

� �2 = �1; � �
]
2 = �

]
1 [�[�].

where,� [s is obtained by taking the union of the
nodes and=)-edges of� ands,

+
...
+

S S]nS

�[�] �!S

+
...
+

S S]nS

�[�;�]

Ci: �[�] is a partially instantiated parametric strand in�]1
and� is a substitution for the remaining variables. In
particular, if�[�] mentions constraints�, then their in-
stantiation should be compatible with the know persis-
tent data,i.e.�[�] � �. Then,

� �2 = �1; � �]2 = �]1 � �[�] [�[�; �].

where,��s is the subgraph of� obtained by removing
all nodes ofs and their incident edges.

Themoveo that labels the transition arrow7�!S records
the necessary information to reconstruct the transition
uniquely up to the creation of new strands. Given a con-
figuration(�; �]), amovefor transitions of typeS0, S,R0,
andR is a tripleo = (�; ��p; ��s) where� is a node,��p is the
parent node�p of � according to the=) relation (or “�” if
� is the first node of a chain — casesS0 andR0), and��s

is the node�s sending the message that labels� along the
�! relation (if � is negative, or “�” otherwise). In order
to simplify our analysis, we shall assume that transitions of
typeCf andCi are unobservable. Below, we will briefly
discuss the natural alternative of choosing the pairs(�; �)
and(�[�]; �) as witnesses of these two types of transitions,
where� is the name of the chosen parametric strand, and�

and� are the instantiating substitutions.
A multistep transitionamounts to chaining zero or more

one-step transitions. This relation is obtained by taking the
reflexive and transitive closure~o7�!�

S of o7�!S , where~o is
the sequence of the component moves (“�” if empty). ~o is a
trace of the computation.

Observe that our definition of transition preserves
configurations, i.e. if (�1; �

]
1) is a configuration and

(�1; �
]
1)

o7�!S(�2; �
]
2), then(�2; �

]
2) is also a configuration.

This property clearly extends to multistep transitions.
The concepts and extensions we have just introduced set

the basis for the translations between the multiset rewrit-
ing approach to security protocol specification and strand
constructions. We describe the two directions of this trans-
lations in Sections 4 and 5, respectively. We conclude this
section with an analysis of the notions just defined.

The above definition embeds two distinct notions of
traces for strand constructions. On the one hand, the bun-
dle within a configuration gives a precise account of which
events have taken place, abstracting from their temporal oc-
currence order (and instantiation details), but taking into
consideration their dependencies both in terms of the order-
ing of steps (captured by=)-edges) and message transmis-
sion/reception (expressed by the�!-arrows). On the other
hand, the move sequence~o that labels the transition arrow
also indicates which steps have taken place, but imposes a
linear occurrence order on them. We will now relate these
two notions.

Notice that each move inserts exactly one node in a con-
figuration. Moreover, the very possibility of making such an
insertion is regulated by the two types of edges. Therefore,
we can think of a bundle as specifying a partial order of the
occurrence of individual moves (the ordering relation is the
transitive closure of the union of=) and�!). Instead, a
move sequence linearizes the set of moves into a total or-

41

der. In general, we can linearize a bundle� as a sequence
of moves in many ways. The following definition imposes
constraints on the form of acceptable move sequences.

Given a bundle� = (S;=);�!), we defineO� as the
set of move sequences~o = (o1; : : : ; ojSj) such that, fori =
1; : : : ; jSj, oi = (�i; ��

p
i ; ��

s
i) and

� �i 2 S and�i 6= �j for i 6= j.

� – if �i is initial in S, then��pi = �;

– if there is an indexj < i with oj = (�j ; ��
p
j ; ��

s
j)

such that�j =) �i in �, then��pi = �j .

� – if �i = +m, then��si = �;

– if �i = �m and there is an indexj < i with
oj = (�j ; ��

p
j ; ��

s
j) such that�j �! �i in �, then

��si = �j .

Then, any legal move sequence~o from (�; �) to any configu-
ration containing� is an element ofO� . This is formalized
in the following completeness result.

Property 3.1 Let (�; �]) be a configuration over a setS
of parametric strands and~o a move sequence such that
(�; �) ~o7�!�

S(�; �
]). Then~o 2 O� .

Proof: We proceed by induction on the length of the move
sequence~o, checking that each element in it satisfies the
above definition. 2

Moreover, any~o in O� is a legal move sequence from
(�; �) to any configuration containing�, as expressed by the
following soundness result.

Property 3.2 Let (�; �]) be a configuration over a setS
of parametric strands, then for each~o 2 O� , the multistep
transition(�; �) ~o7�!�

S(�; �
]) is well-defined.

Proof: We proceed by induction on the size of the configu-
ration, where(�1; �

]
1) � (�2; �

]
2) if �1 is a proper subgraph

of �2 or if �1 is a subgraph of�2 and�]1 is a proper subgraph
of �]2. 2

If ~o describes the transition from(�; �) to a configuration
(�; �]), the individual moves in~o contain enough informa-
tion to playback the sequence of moves and exactly recon-
struct�. This is done as follows.

Given a sequence of moves~o = (o1; : : : ; oj~oj), with oi =
(�i; ��

p
i ; ��

s
i) for i = 1 : : : j~oj, we define thestrand space as-

sociated with~o, written �~o, as the triple(S~o;=)~o;�!~o)
given as follows:

� S~o = f�i : i = 1 : : : j~ojg.

� =)~o = f(�i; �j) : ��
p
j = �ig.

� �!~o = f(�i; �j) : ��
s
j = �ig.

Now, if ~o labels a transition from(�; �) to some config-
uration (�; �]), then�~o is isomorphic to�. We have the
following expected result.

Property 3.3 Let (�; �]) be a configuration and~o a move
sequence such that(�; �) ~o7�!�

S(�; �
]). Then,�~o is a bundle

and there is a bi-graph isomorphism between�~o and�.

Proof: By induction on the length of~o. 2

The structure of moves we have considered is not suf-
ficient to reconstruct the final configuration of a move se-
quence. If we are interested in such objects, we need to
enrich our definition of move to include the (name of the)
parametric strand� and the substitutions� and� used when
inserting a new strand in a configuration. Simple adapta-
tions of the properties in this section hold in this extended
setting. The definitions and proofs become more technical
and will be discussed in the full paper [1].

Moves Bundles

~oO�~o

�~o

Figure 4. Relating Moves and Bundles

The two constructions we have just defined are essen-
tially inverse of each other, as schematized in Figure 4.
Given a bundle, the first returns the set of all the move se-
quences that produce it. Given a move sequence, the sec-
ond returns the resulting bundle. In particular, observe that,
when starting from a bundle, chaining these transformations
yields the same bundle. However, if we start from a move
sequence, their cascaded application will return the set of
all sequences that construct its same target bundle. These
remarks are summarized in the following corollary and Fig-
ure 4.

Corollary 3.4 Let (�; �]) be a configuration over a set of
parametric strandsS.

1. For every~o such that(�; �) ~o7�!�
S(�; �

]), we have that
~o 2 O�~o .

2. For every~o 2 O� , �~o is isomorphic to�.

42

Proof: The first statement reduces to Property 3.1 after ob-
serving thatO�~o = O� since�~o is isomorphic to�. The
second part is a consequence of Properties 3.2 and 3.3.2

These considerations allow us to extract a useful notion
of equivalence between move sequences:~o1 and ~o2 are
equivalentif they produce the same bundle, which can be
tested by verifying whether�~o1 and �~o2 are isomorphic.
The equivalence class to which a move sequence~o belongs
is thereforeO�~o . Notice also that, in general, symmetry
considerations do not allow selecting a unique element of
O� as “the” normal move sequence from(�; �) to a config-
uration embedding a bundle�: this suggests that�~o is the
most compact representation of the equivalence classO�~o

of ~o.

4 From Multisets to Strands

The basic idea behind our translation will be to map a
set of multiset rewrite rules specifying a role to a paramet-
ric strand. In particular, rules will correspond to nodes, and
the role state predicates will be replaced by the backbone
(=)) of the strand. In Section 4.1, we transform a regular
protocol theory into an equivalent normal form. This trans-
formation is novel and applies to a more general setting than
the multiset rewriting specification of cryptoprotocols. In
Section 4.2, we describe the translation proper and prove its
correctness.

4.1 Normal Protocol Theories

We present two transformations which demonstrate that,
without loss of generality, we can subsequently consider
only normalized protocol theories. Their purpose is to re-
strict protocol theories so that they are closer to the strand
model. Note that these transformations are used for math-
ematical convenience: non-normal protocol theories are of-
ten more perspicuous than their normalized counterparts.

Role generation rule: We subsume the role generation
rule of every role�, i.e. the ruler�0 : �(~x) �!
A�0(~x); �(~x), into the first rule of�. For each of its
two schematic forms:

r�1 : A�0(~x) �! 9~n:A�1(~x; ~n);N(m(~x; ~n))

r�1 : A�0(~x);N(m(~x; ~y)) �! A�1(~x; ~y)

we obtain the following rules:

r0�1 : �(~x) �! 9~n:A�1(~x; ~n);N(m(~x; ~n)); �(~x)

r0�1 : �(~x);N(m(~x; ~y)) �! A�1(~x; ~y); �(~x)

respectively. In both cases, the parameters~x include
the arguments of the elidedA�0, andm(~x) does not

need to mention each variable in~x. This amounts to
setting initial values in the first step of a role, rather
than prior to any message exchange.

Nonces: We transform protocol theories so that all nonces
generated by a role are preemptively chosen in the first
rule of that role. We accomplish this by adding extra
arguments to role state predicates, and pass the nonces
generated in the first rule to subsequent uses through
fresh variables in the role state predicates. Since roles
are bounded, there are only a small finite number of
nonces that need to be generated in an entire role.
This transformation intuitively means that a participant
should roll all her dice immediately, and look at them
as needed later.

This intuitive description should be detailed enough to spare
formalizing this transformation. A fine understanding, es-
pecially of the placement of9, is best gained by interpret-
ing our extended multiset rewriting in linear logic, which is
however beyond the scope of this paper. As a result, we are
left with the followingnormalized rules:

Role generation rules:

� �r�1 : �(~x)
�! 9~n: �A�1(~x; ~n);N(m(~x; ~n)); �(~x)

� �r�1 : �(~x);N(m(~x; ~y))
�! 9~n: �A�1(~x; ~y; ~n); �(~x)

Other rules:

� �r�i+1 : �A�i(~x) �! �A�i+1(~x);N(m(~x))

� �r�i+1 : �A�i(~x);N(m(~x; ~y)) �! �A�i+1(~x; ~y)

where we have written a short line above the transformed
role state predicates. Given a role�, we denote the normal-
ized specification as��. We writeR for the application of
this transformation to a protocol theoryR. Given a state
S, we writeS for theopen statethat replaces each instan-
tiated role state predicateA�i(~t) in S with �A�i(~t; ~n) where
~n contains a distinct new variable for each argument added
toA�i. Open states are instantiated to regular states through
substitutions� that map each variable inS to a distinct fresh
constant that does not appear inS. Observe thatS0 = S0

since the initial state does not contain role state predicates.
It is fairly easy to prove that the above transformation is

sound and complete with respect to our original definition
of a regular role, even in the presence of the intruder (see
Appendix A).2

2The original version of this paper stated this lemma relative to gen-
eral rather than regular protocol theories. This is incorrect: assume that
S1�!RS2 thanks to the initialization ruler�0 of some role�. Assume
also that the first message exchange ruler�1 of this role contains a per-
sistent predicate which does not have any instantiation in�. The normal
form of r�0 would then contain this constraint, making it inapplicable to
any stateS1 would be mapped to.

43

Lemma 4.1 LetR be a regular protocol theory,S0 the ini-
tial state, andS a state. Let moreover� be an arbitrary
substitution from the variables inS to distinct unused con-
stants. Then,

1. If S0
~r�!�

RS, thenS0
~�r�!�

�R
S[�].

2. If S0
~�r�!�

�R
S[�], thenS0

~r�!�
RS.

3. If S0
~r�!�

R;IS, thenS0
~�r�!�

�R;I
S[�].

4. If S0
~�r�!�

�R;I
S[�], thenS0

~r�!�
R;IS.

where~�r is obtained by normalizing~r.

Proof: By induction on the length of the given transition
sequences. 2

4.2 Translation

We are now in a position to translate roles expressed in
the transition system formalisms into parametric strands. To
each normalized role specification��, we associate a para-
metric strandp��q of the following form

�(~x; ~y; ~n) ~n fresh,�(~x)

where~n are the existential variables mentioned in the first
rule �r�1 of this role,�(~x) are the persistent predicates ac-
cessed in this rule, and~y are the other variables appearing
in the role (~x; ~y; ~n appear therefore in its last role state pred-
icate).

Next, we associate a parametric node��r�i with each rule
�r�i. The embedded message is the message appearing in the
antecedent or the consequent of the rule, the distinction be-
ing accounted for by the associated action. More precisely,
we have the following translation (where we have omitted
the argument of the state predicates, the indication of the
variables occurring in the message, persistent information,
and the existential quantifiers appearing in the role genera-
tion rule):

p
�A�i �! �A�i+1;N(m)q = +m

p
�A�i;N(m) �! �A�i+1q = �m

wherep q is our translation function.
Finally, we set the backbone of this parametric strand ac-

cording to the order of the indices of the nodes (and rules):

��r�i =) ��r�j iff j = i+ 1:

In this way, we are identifying the role state predicates
of the transition system specification with the=)-edges
constituting the backbone of the corresponding parametric
strand. Notice that the well-founded ordering over role state

predicates is mapped onto the acyclicity of the=)-arrows
of the strand constructions.

This completes our translation as far as roles, and there-
fore protocols, are concerned. Applying it to the Needham-
Schroeder protocol yields exactly the parametric strand
specification of Figure 3 presented in Section 3. Given a
set of rolesR in the transition system notation, we indicate
the corresponding set of parametric strands aspRq. We
will give correctness results at the end of this section after
showing how to translate global states. The translation of
the intruder model is discussed in Appendix A.

In order to show that a transition system specification
and its strand translation behave in the same way, we need
to relate states and configurations. We will refrain from
giving an exact mapping, since a configuration embeds a
bundle expressing the execution up to the current point in
fine detail. A state is instead a much simpler construction
that does not contain any information about how it has been
reached. Therefore, we will consider some properties that a
configuration should have to be related to a state.

We say that a stateS = �; A;N(~m); I(~m0) is com-
patible with a strand configuration(�; �]), written S �R

(�; �]) relative to a protocol theoryR, if the following con-
ditions hold:

� Fr(�) = ~m; ~m0.

� Let �A�i(~n�; ~t�) in A be the instantiation of thei-th role
state predicate of a role�� in R with nonces~n� and
terms~t�. Then,

– �] contains a strands�(~n�; ~t�), obtained by in-
stantiating the strands� = p��q with “fresh” con-
stants~n� and terms~t�.

– � contains an initial prefix ofs�(~t) whose last
node has indexi.

Moreover every non-penetrator strand in(�; �]) is ob-
tained in this way.

� Every instance of a penetrator strand in(�; �]) is com-
pletely contained in� (see Appendix A).

Intuitively, we want the state and the configuration to men-
tion the same nonces, to have the same messages in transit
(including the data currently processed by the intruder), to
be executing corresponding role instances and have them be
stopped at the same point.

Given this definition, we can state the correctness re-
sult for our translation of transition systems into strand
constructions as follows, where details about how the in-
truder models are related to each other can be found in Ap-
pendix A.

44

Theorem 4.2 Let I0 be some initial intruder knowledge
and pI0q its strand translation as from Appendix A. If
�; I0

~r�!�
I;RS is a regular multiset rewriting transition se-

quence overI;R from the empty state to stateS, then there
is a configuration(�; �]) and a sequence of moves~o such
that

(�; �) ~o7�!�
P(pI0q);pRq

(�; �])

is a strand transition sequence from the empty configuration
(�; �) to (�; �]), andS �R (�; �]), i.e.S is compatible with
(�; �]).

Proof: The proof proceeds by induction on~r, mapping ev-
ery step to a corresponding move in the strand world, while
preserving the compatibility relation. 2

5 From Strands to Multisets

We will now show how to translate a set of parametric
strands into a set of transition rules that preserve multistep
transitions. Again, there is a slight mismatch between the
two formalisms which is addressed in Section 5.1. This
technical adjustment of our definition of strands will pro-
duce precisely the regular role transition rules we originally
defined in Section 2. We describe the translation itself and
prove it correct in Section 5.2.

5.1 Decorated Strands

In the previous section, we have observed and taken ad-
vantage of the fact that there is a close affinity between the
rules in the transition system specification of a role and the
nodes in a parametric strand. More precisely, a node to-
gether with the outgoing or incoming�!-edge and an indi-
cation of what to do next corresponds to a transition. In tran-
sition systems, “what to do next” is specified through the
role state predicatesA�i; in strand constructions, by means
of the=)-edges. Therefore, using the same intuition as in
Section 4, we will translate=)-edges to state predicates.
We need to equip these predicates with the appropriate ar-
guments (while we were able to simply drop them in the
inverse translation).

Before describing how to do so, we will address two
other minor syntactic discrepancies: the absence of an (ex-
plicit) strand equivalent of the role generation rule�(~x) �!
A�0(~x); �(~x), and the fact that, in the transition system
specification of a role, there is a final state predicate that
lingers in the global state no matter what other transitions
take place.

Role Generation transition: We add a dummy initial
node, say>, to every strand, with no incoming or out-
going�!-edges, and one outgoing=)-edge to the
original first node of the strand.

Final state: Dually, we alter the definition of strands to
contain a final node, say?, again without any incom-
ing or outgoing�!-edge, and with one incoming=)-
arrow from the original last node of the strand.

This corresponds to redefining strands as strings drawn
from the language>(�M)�?, rather than just(�M)�.
Notice that now every (proper) event has both a predecessor
and a successor=)-edge.

With the addition of these auxiliary nodes, we can la-
bel each=)-arrow in a strands with parameters~xs; ~ns (~ns
markedfresh) with a predicate constantAsi with progres-
sive indicesi. In the case of parametric strands, we equip
these labels with arguments drawn from its set of parame-
ters as follows:

Initial arrow: > =) �

This is the predicateAs0 labeling the=)-edge that
links the added initial node> to the first node of the
original strand. The arguments ofAs0 will be ~xs.

Successor arrow to a positive node:

: : :
Asi(~x)
=) +m(~x; ~n) =) : : :

Let Asi(~x) be the label of the incoming=)-edge of
a positive node� = +m(~x; ~n), wherem mentions
known variables among~x and unused nonces~n among
~ns. Then the outgoing=)-arrow of� will have label
Asi+1(~x; ~n).

Successor arrow to a negative node:

: : :
Asi(~x)
=) �m(~x; ~y) =) : : :

Let Asi(~x) be the label of the incoming=)-edge
of a positive node� = �m(~x; ~y), wherem men-
tions known variables among~x, and unseen data~y.
Then, the outgoing=)-arrow of n will have label
Asi+1(~x; ~y).

Given a parametric strands, we denote the result of apply-
ing these transformations as�s. If S is a set of paramet-
ric strands specifying a protocol, we writeS for the trans-
formed set. Applying this transformation to the Needham-
Schroeder protocol yields the enhanced strand specification
in Figure 5, where the additions have been grayed out.

Since we have changed the syntax of a parametric strand,
we need to upgrade its dynamics, originally presented in
Section 2. First, an obvious alteration to the instantiation of
a parametric strand: we apply the substitution to the labels
of the=)-edges as well as to the messages embedded in the
nodes. We carry on this change to the resulting bundles and
configurations: every=)-edge between two nodes�1 and
�2 now carries a labelAsi(~t). We indicate this as�1

Asi(
~t)

=)�2
(or with its vertical equivalent). Notice that we erased this
information in the opposite translation. Given a bundle�

45

Alice(A;B;NA; NB) NA fresh,�A(A;B)

>
w
w
w
w
w
�

A0(A;B)

fNA; AgKB �!
w
w
w
w
w
�

A1(A;B;NA)

�! fNA; NBgKAw
w
w
w
w
�

A2(A;B;NA; NB)

fNBgKB �!
w
w
w
w
w
�

A3(A;B;NA; NB)

?

Bob(A;B;NA; NB) NB fresh,�B(A;B)

>
w
w
w
w
w
�

B0(A;B)

�! fNA; AgKBw
w
w
w
w
�

B1(A;B;NA)

fNA; NBgKA �!
w
w
w
w
w
�

B2(A;B;NA; NB)

�! fNBgKBw
w
w
w
w
�

B3(A;B;NA; NB)

?

where �A(A;B) = Pr(A); PrvK(A;K�1
A); Pr(B); PubK (B;KB)

�B(A;B) = Pr(B); PrvK(B;K�1
B); Pr(A); PubK (A;KA)

Figure 5. Extended Strand Specification of the Needham-Schroeder Protocol

and a configuration(�; �]) relative to a set of parametric
strandsS, we write�� and(��; ��]) for the corresponding en-
tities relative toS.

The definition of one-step transition, in symbols
(��1; ��

]
1)

o7�!S(��2; ��
]
2), changes as follows:

Extension of an existing strand: We proceed exactly as
in Section 2, except for the fact that situationsS0 and
R0 in Section 3.3 do not apply.

Installation of a new strand:

We select a parametric strand� from S, instantiate it
with a substitution� for its fresh variables and add the
resulting strand�[�] to ��]2. This corresponds to upgrad-
ing caseCf in Section 3.3 as outlined in the following
figure. We do not formalize this transformation (call it
Cf

0) it in full detail since it should be obvious how to
obtain it.

�S �S]n �S

�!S

>w
w
�

... �[�]

�S �S]n �S

TransitionCi is consequently upgraded toCi
0 de-

scribed in the following figure. Notice that we add the
first node,>, of �[�; �] to ��2

>w
w
�

... �[�]

�S �S]n �S

�!S

>w
w
�

... �[�;�]

�S �S]n �S

As in the original case, multistep transitions are obtained
by taking the reflexive and transitive closure of the above
judgment.

This transformation is sound and complete with respect
to our original system.

Lemma 5.1 Let S be a set of parametric strands, and
(�1; �

]
1) and(�2; �

]
2) two configurations on it. Then,

(�1; �
]
1)

~o7�!�
S(�2; �

]
2) iff (��1; ��

]
1)

~�o7�!�
S
(��2; ��

]
2)

where~�o is obtained from~o by extending the given transfor-
mation to traces.

Proof: In the forward direction, we add the labels as from
the definition (they do not constrain the construction in any
way); every use of transitionCf that introduces a new
strand is mapped toCf

0, which also installs the node>.
In the reverse direction, we simply forget about labels and
extra nodes. 2

5.2 Translation

We are now in a position to present a translation of para-
metric strands to the coordinated sets of transition rules rep-

46

>
w
w
w
w
�
As0(~x) ; �(~x) �! As0(~x); �(~x)

w
w
w
w
�
Asi(~x)

m(~x; ~n) �! ; Asi(~x) �! 9~n:Asi+1(~x; ~n);N(m(~x; ~n))
w
w
w
w
�
Asi+1(~x; ~n)

w
w
w
w
�
Asi(~x)

�! m(~x; ~y) ; Asi(~x);N(m(~x; ~y)) �! Asi+1(~x; ~y)
w
w
w
w
�
Asi+1(~x; ~y)

w
w
w
w
�
Asjsj(~x)

? ; (No corresponding rule)

Figure 6. Transforming Extended Strands to Multiset Rewriting Rules

resenting a role. Each node is mapped to a rule, the label of
its incoming and outgoing=)-edge will be the state pred-
icates in the antecedent and consequent, respectively, and
the network message will be the message embedded in the
node, its polarity dictating on which side of the arrow it
should be appear. More formally, we have the translation
displayed in Figure 6, where the parameters of the added
state predicates are classified as in the above definition.

Given a set of (decorated) parametric strandsS, we write
pSq for the set of protocol rules resulting from this transfor-
mation. Observe that it yields regular rules. Applying this
translation to the enhanced parametric strands representing
the Needham-Schroeder protocol in Figure 5 produces ex-
actly the original transition system specification given in
Figure 1.

We will now show that the translation we just outlined
preserves transition sequences. In order to do so, we need to
extract a state from a configuration and show that steps be-
tween configurations are mapped to steps between the cor-
responding states.

Let S be a set of parametric strands,pSq its transla-
tion as a set of transition rules, and(�; �]) a configuration
overS;P(P0) where all penetrator strands have been com-
pleted. We define thestate associated with(��; ��]), writ-
tenSS(��; ��

]), as the state�; A;N; I obtained as follows,
where we writeH: : :I for the multiset equivalent of the usual

set notationf: : :g:

� N = HN(m) : � 2 Fr(��); � is not on a penetrator
strand, and� has label+mI:

� I = HI(m) : � 2 Fr(��); � is on a penetrator strand,
and� has label+mI:

� A = HAsi(~t) : si�1
Asi(~t)
=) si 2 ��] n �� andsi�1 2 Fr(�)I.

Intuitively, we collect the messages in transit coming from
honest principal’s strands inN , the current knowledge of
the intruder inI , and the labels of the=)-edges at the
boundary between��] and �� as the multiset of role state
predicatesA.

Then, sequences of moves in the strand world and their
translation as transition system steps are related as follows,
where the treatment of the intruder models is described in
Appendix A:

Theorem 5.2 LetP0 be some initial penetrator knowledge,
and pP0q its multiset translation as in Appendix A. Let
(�1; �

]
1) and(�2; �

]
2) be two configurations on the penetra-

tor strandsP(P0) and a set of parametric strandsS such
that all penetrator strands have been completed. For every
multistep strand transition

(�1; �
]
1)

~o7�!�
P(P0);S

(�2; �
]
2);

and everyI 00 � pP0q, there exists a regular multiset transi-
tion sequence~r such that

47

pP0q; SS(��1; ��
]
1)

~r�!�
I0;pSq

SS(��2; ��
]
2); I

0
0:

Proof: The proof of this result proceeds by induction on
the structure of~o. The only non-obvious aspect is that, as
observed in Appendix A.4, we need to insert applications of
the rulerec0 when processing a message that flows from an
honest principal’s to a penetrator strands. We add uses of
snd0 in the dual case. 2

Notice that we do not need to start from the empty configu-
ration.

The mapping from strands to multiset rewriting we have
just finished outlining, and the translation from multiset
rewriting to strand constructions described in Section 4 are
inverse of each other. We defer a further discussion of this
aspect to the full version of this paper [1].

6 Conclusions and Future Work

We have developed a formal connection between multi-
set rewriting [2, 5] and strand constructions [6, 10]. The
formalization of this unsurprising result required a number
of unexpected adjustments to both frameworks. In particu-
lar, we equipped strands with a dynamic dimension by in-
troducing a notion of transition that allows growing bundles
from a set of parametric strands. This enabled us to relate
the distinct notions of traces inherent to these formalisms:
bundles and multiset rewrite sequences. On the other hand,
we omitted the initialization phase of our multiset theories,
since this phase has no counterpart in strand spaces.

This work can immediately be applied to strengthen both
formalisms. Our results imply that many multiset rewriting
concepts and techniques devised over the years are likely to
be relevant to the research on strands. The linear logic and
rewriting logic foundations of multiset rewriting can thus
be brought to bear on strand spaces as well. In addition,
clean and intuitively appealing notions from strand spaces
can be brought to multiset rewriting. For example, strand
space bundles appear to be a better notion of computation
trace than rewrite sequences, and therefore analogs could
be fruitfully adopted in multiset rewrite systems. Finally,
our work suggests extending strand spaces by embedding
an explicit form of initialization, and refining the notion of
initialization theories of multiset rewriting.

This paper can also be viewed as another step in a
larger program of demonstrating connections between for-
malisms: the interoperation of logical systems can lead to
improvements in the newly connected systems, but also lead
to a deeper understanding of the entire problem domain. In
this case, we have gained insight into the Dolev-Yao model
of cryptoprotocols. Further connections to other formalisms
including state-transition systems and linear logic can im-
prove the situation further. In fact, we are currently inves-
tigating properties of the representation of both strand and

multiset rewriting constructions in linear and other nonclas-
sical logics, as well as in process specification languages
such as colored Petri nets.

Acknowledgements

We would like to thank Joshua Guttman, Javier Thayer
Fábrega, Jonathan Herzog, and Al Maneki for the stimulat-
ing discussions about strands. We are also indebted to Syl-
van Pinsky for his encouragements to write down our ideas
about the relationship between strand construction and our
protocol theories. Finally, this work profitted from fruit-
ful discussions with Jon Millen, Cathy Meadows, and Paul
Syverson.

References

[1] Iliano Cervesato, Nancy Durgin, Patrick Lincoln, John
Mitchell, and Andre Scedrov. A comparison between strand
spaces and transition systems for the specification of secu-
rity protocols. To appear as a technical report, Department
of Computer Science, Stanford University.

[2] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln,
John C. Mitchell, and Andre Scedrov. A meta-notation for
protocol analysis. In P. Syverson, editor,Proceedings of
the 12th IEEE Computer Security Foundations Workshop —
CSFW’99, pages 55–69, Mordano, Italy, June 1999. IEEE
Computer Society Press.

[3] Grit Denker and Jonathan K. Millen. CAPSL Intermediate
Language. In N. Heintze and E. Clarke, editors,Proceedings
of the Workshop on Formal Methods and Security Protocols
— FMSP, Trento, Italy, July 1999.

[4] Danny Dolev and Andrew C. Yao. On the security of public-
key protocols. IEEE Transactions on Information Theory,
2(29):198–208, 1983.

[5] Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre
Scedrov. Undecidability of bounded security protocols. In
N. Heintze and E. Clarke, editors,Proceedings of the Work-
shop on Formal Methods and Security Protocols — FMSP,
Trento, Italy, July 1999.

[6] F. Javier Thayer F´abrega, Jonathan C. Herzog, and Joshua D.
Guttman. Strand spaces: Why is a security protocol cor-
rect? InProceedings of the 1998 IEEE Symposium on Secu-
rity and Privacy, pages 160–171, Oakland, CA, May 1998.
IEEE Computer Society Press.

[7] F. Javier Thayer F´abrega, Jonathan C. Herzog, and Joshua D.
Guttman. Mixed strand spaces. In P. Syverson, editor,Pro-
ceedings of the 12th IEEE Computer Security Foundations
Workshop — CSFW’99, pages 72–82, Mordano, Italy, June
1999. IEEE Computer Society Press.

[8] A. Maneki. Honest functions and their application to the
analysis of cryptographic protocols. In P. Syverson, editor,
Proceedings of the 12th IEEE Computer Security Founda-
tions Workshop — CSFW’99, pages 83–89, Mordano, Italy,
June 1999. IEEE Computer Society Press.

48

[9] R.M. Needham and M.D. Schroeder. Using encryption for
authentication in large networks of computers.Communica-
tions of the ACM, 21(12):993–999, 1978.

[10] Dawn Song. Athena: a new efficient automatic checker
for security protocol analysis. InProceedings of the Twelth
IEEE Computer Security Foundations Workshop, pages 192–
202, Mordano, Italy, June 1999. IEEE Computer Society
Press.

A Intruder Models

In this appendix, we describe the intruder models used
in the multiset rewriting formalism (Section A.1) and in the
strand constructions (Section A.2). In Section A.1, we also
propose an alternate formulation of the former, that eases
the translation between the two formalisms in Sections A.3
and A.4.

A.1 Intruder Theory

The knowledge available at any instant to the intruder
consists of the persistent information in�, of unused por-
tion of the initial knowledge (e.g.the keys of dishonest prin-
cipals), and of intercepted or inferred messages. We use
the state predicateI() to contain each piece of informa-
tion known to the intruder. In particular, we represent the
fact that the intruder “knows”m (a message, a key, etc.) as
I(m). The overall knowledge of the intruder at any particu-
lar instant is indicated withI . We writeI0 for the intruder’s
initial knowledge.

The capabilities of the intruder are modeled by thestan-
dard intruder theoryI displayed in Figure 7. These rule
are taken verbatim from [2, 5].I implements the Dolev-
Yao model [4, 9] in our notation. For the sake of readabil-
ity, we have grayed out the information produced by each
rule. Observe that these rules display an overly conservative
bookkeeping strategy for the known messages: knowledge
is never discarded, but carried along as new messages are
inferred.

The intruder capabilities formalized in the strand model
relies on a slightly different strategy for managing cap-
tured knowledge: inferring new information has the effect
of deleting the data it was constructed from. Moreover, it
can discard information. However, explicit duplication is
possible. We express this behavior by the rulesI 0 in Fig-
ure 8.

Clearly, our original intruder modelI can easily be sim-
ulated by a systematic use of the duplication rule ofI 0. Go-
ing in the other direction is slightly trickier asI never dis-
cards any information. The substantial equivalence of these
two systems is summarized in the following result.

Property A.1 LetR be an arbitrary protocol theory, and
S1 andS2 two states.

� If S1
~r�!�

R;IS2, thenS1
~r0�!�

R;I0S2.

� If S1
~r0�!�

R;I0S2, then there is an intruder stateI 0 such
thatS1

~r�!�
R;IS2; I

0.

Proof: The idea underlying the proof of the first statement
is that every rule inI can be emulated by the corresponding
rule in I 0 preceded by one or more applications ofdup.
Ruledel is never used. The transition sequence~r0 is derived
from~r according to this strategy.

The proof of the second half of this property is based on
the observation that ruledup can be emulated inI by ap-
plying snd andrec in succession. The additional intruder
stateI 0 consists of copies of intermediate information pro-
duced by the rules ofI plus whatever data were explicitly
discarded usingdel. 2

A.2 Penetrator Strands

We now formalize the intruder model of [6, 10], which
consists of patterns calledpenetrator strands, and of a set
of messagesP0 expressing the intruder’s initial knowledge.
The corresponding parametric strands are shown in Fig-
ure 9, which includes a case to handle intruder-generated
nonces. This possibility is missing from [6, 10], but the
completion is straightforward. We also distinguished cases
M(m) andM 0(m), which are identified in [6, 10]. We refer
to the collection of (parametric) penetrator strands in Fig-
ure 9 asP(P0).

Several observations need to be made. First, the in-
truder specification underlying penetrator strands follows
the Dolev-Yao model [4, 9]. The parametric strands in Fig-
ure 9 are indeed closely related to the intruder modelI 0

above. A translation can be found in Sections A.3 and A.4
below, while a proof-sketch is embedded in the main results
in Sections 4.2 and 5.2.

As a final remark, notice that the transition system spec-
ification distinguishes between messages transmitted on the
network (identified by the predicate symbolN) and mes-
sages intercepted and manipulated by the intruder. Indeed,
the predicateI implements a private database, a workshop
for the fabrication of unauthorized messages, hidden from
the honest principals of the system. No such distinction ex-
ists in the strand world. Therefore, it may seem that the
intruder dismantles and puts together messages in the open,
under the eyes of the other principals in the system. This
is not the case: the privacy of the intruder is guaranteed by
the fact that the�! relation is functional (see 3.2). Only
the intruder can make use of intermediate results of penetra-
tor manipulations since any other principal observing such
messages would make them unavailable to the intruder (and
it would not be an intermediate, but a final product of mes-
sage forgery): since only one�!-edge can leave a negative

49

rec : N(m) �! I(m)

dcmp : I(m1;m2) �! I(m1); I(m2) ; I(m1;m2)

decr : I(fmgk); I(k
0);KeyP(k; k0) �! I(m) ; I(fmgk); I(k

0);KeyP(k; k0)

snd : I(m) �! N(m) ; I(m)

cmp : I(m1); I(m2) �! I(m1;m2) ; I(m1); I(m2)

encr : I(m); I(k) �! I(fmgk) ; I(m); I(k)

nnc : � �! 9n: I(n)

pers : �(m) �! I(m) ; �(m)

Figure 7. The Standard Intruder Theory I

rec0 : N(m) �! I(m)

dcmp0 : I(m1;m2) �! I(m1); I(m2)

decr0 : I(fmgk); I(k
0);KeyP(k; k0) �! I(m);KeyP(k; k0)

snd0 : I(m) �! N(m)

cmp0 : I(m1); I(m2) �! I(m1;m2)

encr0 : I(m); I(k) �! I(fmgk)

nnc0 : � �! 9n: I(n)

pers0 : �(m) �! I(m); �(m)

dup : I(m) �! I(m); I(m)

del : I(m) �! �

Figure 8. The Modified Intruder Theory I 0

node and such an arrow is the only way to communicate (or
observe somebody else’s) data, the intruder could not access
the message in this node for further processing.

A.3 From Intruder Theory to Penetrator Strands

The introduction of the alternate intruder theoryI 0 in
Section A.1 enables a trivial mapping to penetrator strands:
we simply map every intruder rule to the corresponding
penetrator strand, with the exception ofrec0 andsnd0, which
do not have any correspondent. In symbols:

prec0(m)q = none
psnd0(m)q = none

pdcmp0(m1;m2)q = S(m1;m2)

pcmp0(m1;m2)q = C(m1;m2)

pdecr0(m; k)q = D(m; k)

pencr0(m; k)q = E(m; k)

pnnc0(n)q = N(n)

ppers0(m)q = M(m)

pdup(m)q = T (m)

pdel(m)q = F (m)

where we have equipped the intruder rules with arguments
in the obvious way. We also need to mapI0 to a setP0

of messages initially known to the intruder, to be processed
by the penetrator strandM 0: pI0q = fm : I(m) 2 I0g.
Every access to a messageI(m) in I0 will be translated to
an application of the penetrator strandM 0(m).

A.4 From Penetrator Strands to Intruder Theory

The translation of the penetrator strandsP(P0) in Fig-
ure 9 essentially is the inverse of the above mapping. Our
target intruder model, in the multiset rewriting world, isI 0.

pS(m1;m2)q = dcmp0(m1;m2)

pC(m1;m2)q = cmp0(m1;m2)

pD(m; k)q = decr0(m; k)

pE(m; k)q = encr0(m; k)

pN(n)q = nnc0(n)

pM(m)q = pers0(m)

pT (m)q = dup(m)

pF (m)q = del(m)

pM 0(m)q = (see below)

50

Persistent

M(m) (m persistent) :

m �!

Initial

M 0(m) (m 2 P0) :

m �!

Nonces

N(n) : n fresh

n �!

Intercept

F (m) :

�! m

Compose

C(m1;m2) :

�! m1
w
w
w
�

�! m2
w
w
w
�

(m1;m2) �!

Decompose

S(m1;m2) :

�! (m1;m2)
w
w
w
�

m1 �!
w
w
w
�

m2 �!

Encrypt

E(m;k) :

�! m
w
w
w
�

�! k
w
w
w
�

fmgk �!

Decrypt

D(m; k; k0) : KeyP(k; k0)

�! fmgk
w
w
w
�

�! k0
w
w
w
�

m �!

Duplicate

T (m) :

�! m
w
w
w
�

m �!
w
w
w
�

m �!

Figure 9. The Penetrator Strands P

where we have again equipped the intruder transition rules
with the obvious arguments.

Notice that no penetrator strand is made to correspond
to rulesrec0 or snd0. When translating transition sequences
from the strand world to the transition system setting, we
will insert these rules whenever a message sent by a prin-
cipal’s strand is received by a penetrator strand, and vice-
versa, respectively. We mapP0 to a multisetI0 of mes-
sages initially known to the intruder in the multiset rewrit-
ing framework:pP0q = HI(m) : m 2 P0I. Uses ofM 0(m)
with m 2 P0 are translated to accesses toI(m) 2 pP0q,
possibly preceded by an application of ruledup if M 0(m)
is accessed more than once.

51

